Цитоплазматическая мембрана Образовательная социальная сеть

В состав цитоплазматической мембраны входят

Цитоплазматическая мембрана ( ЦПМ ) бактерии. Состав цитоплазматической мембраны бактерий. Транспортные системы. Мезосомы. Периплазматическое пространство.

Цитоплазматическая мембрана ( ЦПМ ) играет важную роль в обмене веществ бактерий, играя роль осмотического барьера, контролирующего поступление и выход различных веществ из клетки. Иными словами, ЦПМ — физический, осмотический и метаболический барьер между внутренним содержимым бактериальной клетки и внешней средой.

Состав цитоплазматической мембраны бактерий

Как и многие биологические мембраны, цитоплазматическая мембрана ( ЦПМ ) состоит из двух слоев липидов и встроенных в лигшдную мембрану белковых молекул. В состав ЦПМ бактерий входят белки (20-75%), липиды (25-40%), углеводы и РНК (последние два компонента присутствуют в незначительных количествах). Компоненты цитоплазматической мембраны ( ЦПМ ) составляют около 10% сухого веса бактериальной клетки.

Белки цитоплазматической мембраны ( ЦПМ ) подразделяют на структурные и функциональные. Первые образуют различные структуры цитоплазматической мембраны ( ЦПМ ), вторые представлены ферментами, участвующими в синтетических реакциях на поверхности мембраны и в окислительно-восстановительных процессах, а также некоторыми специализированными энзимами (например, пермеазы). Липиды, входящие в состав ЦПМ, представлены насыщенными или мононенасыщенными жирными кислотами, но не стеринами, как у эукариотических клеток.

Транспортные системыцитоплазматической мембраны бактерий

Для цитоплазматической мембраны ( ЦПМ ) характерна выраженная избирательная проницаемость. В ней располагаются системы активного переноса и субстратспецифичных пермеаз. Некоторые белковые молекулы, «вкрапленные» в фосфолипидный бислой, играют роль «пор», через которые движется регулируемый поток веществ. У аэробных бактерий и анаэробов, способных к так называемому «анаэробному дыханию», в цитоплазматическую мембрану ( ЦПМ ) встроена система электронного транспорта, обеспечивающая её энергетические потребности. Самые крупные молекулы, способные проходить через цитоплазматическую мембрану ( ЦПМ ), — фрагменты ДНК.

Мезосомыцитоплазматической мембраны бактерий

Цитоплазматическая мембрана ( ЦПМ ) образует специфические инвагинаты — мезосомы, имеющие вид закрученных в спираль или клубок трубчатых образований. Мезосомы образуют поперечные перегородки между делящимися клетками; к ним обычно прикрепляется бактериальная хромосома.

Периплазматическое пространство

У некоторых бактерий между цитоплазматической мембраной ( ЦПМ ) и клеточной стенкой располагается периплазматическое пространство — полость шириной около 10 нм. Б периплазматическом пространстве имеются перемычки, соединяющие цитоплазматическую мембрану ( ЦПМ ) и пептидогликановый слой. Снаружи в периплазматическое пространство открываются поры клеточной стенки, изнутри в это пространство выходят некоторые клеточные ферменты (рибонуклеазы, фосфатазы, пенициллиназа и др.).

Строение клетки

Цитоплазматическая мембрана

Изучением строения клетки и принципов ее жизнедеятельности занимается наука цитология. Большинство клеток можно увидеть только при помощи микроскопа (средние по размеру клетки имеют диаметр от 20 до 100 мкм).

Клетка — элементарная структурно-функциональная единица живого, обладающая всеми свойствами живых систем: ростом и развитием, размножением, наследственностью и изменчивостью, обменом веществ, саморегуляцией, раздражимостью.

Все многоклеточные и большинство одноклеточных организмов относятся к эукариотам — ядерным, т.е. имеющим клеточное ядро. В группу прокариот (безъядерных) входят главным образом бактерии. Форма, размеры и функции клеток многоклеточного организма очень разнообразны (рис. 1.4), но основной план строения для всех клеток одинаков.

Рис. 1.4. Разнообразие клеток организма:

а — клетки, выстилающие сосуды; 6 — нервная клетка; в — сперматозоид; г— гладкомышечные клетки; д — клетки крови

Каждая эукариотическая клетка состоит из цитоплазматической мембраны, ядра и находящейся между ними цитоплазмы (рис. 1.5). Находящаяся под мембраной цитоплазма содержит гиалоплазму, или цитозоль, органоиды и включения.

Органоиды — постоянно присутствующие в клетке структуры, выполняющие определенные функции. Органоиды делятся на мембранные (они отграничены от гиалоплазмы мембранами, сходными по строению с цитоплазматической) и немембранные (не имеющие мембраны). К первым относятся ядро, эндоплазматическая сеть, аппарат Гольджи, л изосомы, митохондрии, пластиды (имеются только у растений); ко вторым — рибосомы, клеточный центр, цитоскелет.

Включения — непостоянные компоненты клетки, возникающие и исчезающие в зависимости от уровня обмена веществ, например гранулы полисахаридов или капельки жира.

Гиалоплазма (цитозоль) — это основное полужидкое вещество (матрикс) цитоплазмы, заполняющее все пространство между органоидами и обеспечивающее их взаимодействие. Здесь протекает и ряд биохимических процессов (гликолиз, синтез некоторых белков и др.).

Рис. 1.5. Животная клетка:

а — общая схема; 6 — эндоплазматический ретикулум, аппарат Гольджи и экзоцитоз

Клетки растений, животных и грибов несколько различаются по своему строению. Здесь мы рассмотрим строение животной клетки. В связи с тем, что основные специфические функции нейрона связаны с цитоплазматической мембраной, с этой частью клетки мы ознакомимся более подробно.

Цитоплазматическая мембрана (плазмалемма) (рис. 1.6) толщиной 8—12 нм покрывает клетку и отделяет ее от окружающей среды. Мембрана построена из двух слоев липидов, главным образом фосфолипидов и холестерина. Для мембранных липидов характерной особенностью является то, что их молекула гидрофобна лишь со стороны своих неполярных хвостов (см. подпараграф 1.1.3), а ее головка полярна и поэтому гидрофильна. В результате в водном растворе липиды образуют капли и двуслойные пленки, где гидрофильные головки обращены в сторону водного раствора, а гидрофобные хвосты обращены друг к другу. Такие бислои липидов и являются основой биологических мембран.

Читайте также:  Азитрокс инструкция по применению показания, противопоказания, побочное действие – описание Azithrox 1

Рис. 1.6. Цитоплазматическая мембрана

В липиды погружены многочисленные молекулы белков. Одни из них пронизывают двойной слой липидов насквозь (интегральные белки), другие (полуинтегральные белки) погружены в мембрану на различную глубину, а третьи находятся на внешней или внутренней стороне мембраны (периферические белки).

Мембраны, окружающие мембранные органоиды, построены по тем же принципам, что и цитоплазматическая мембрана. Поэтому и цитоплазматические мембраны, и мембраны органоидов объединяют иод названием биологические мембраны. Их отличие состоит в составе входящих в мембраны липидов и белков, что определяет различные свойства и функции биомембран.

Над цитоплазматической мембраной в клетках животных обнаружен гликокаликс, надмембранный слой. Его толщина 3—4 нм. Гликокаликс представляет собой связанные с белками и липидами плазмалеммы ветвящиеся цепочки полисахаридов. Также в гликокаликсе могут быть расположены белки, не связанные с бислоем липидов. Обычно это ферменты, которые расщепляют органические вещества в межклеточной среде.

  • барьерная. Это основная функция мембраны; которая поддерживает целостность клетки, т.е. не дает растекаться ее содержимому, препятствует проникновению в клетку опасных для нее веществ и ограничивает свободную диффузию веществ в клетку;
  • — транспортная. Клетка — открытая система, она постоянно обменивается различными веществами с окружающей ее средой. Плазматическая мембрана обладает избирательной проницаемостью, т.е. способностью пропускать через мембрану в основном те вещества, которые необходимы для нормальной жизнедеятельности. Транспорт веществ через мембрану (трансмембраниый транспорт) может осуществляться пассивно, без затрат энергии, или активно, с затратой энергии молекулы АТФ при ее расщеплении. Так как липидный бислой хорошо пропускает через себя только гидрофобные вещества, транспорт водорастворимых веществ осуществляется главным образом с помощью интегральных белков.

Пассивный транспорт осуществляется через белки-каналы — белки, в которых есть отверстие (канал), через которое могут за счет диффузии (передвижения частиц из области с большей в область с меньшей концентрацией) проходить низкомолекулярные вещества, например ионы.

Активный транспорт используется в тех случаях, когда надо перенести вещество против градиента концентрации, т.е. из области с меньшей в область с большей концентрацией. Для этого в мембране расположены белки-насосы, которые захватывают вещество с одной стороны мембраны и, используя энергию АТФ, переносят его на другую сторону.

Если через мембрану надо перенести высокомолекулярные вещества (макромолекулы биополимеров или даже какой-либо микроорганизм), используются процессы эндоцитоза или экзоцитоза. При эпдоцитозе перемещаемое вещество присоединяется к клеточной мембране с наружной стороны, после чего на этом участке поверхности формируется впячивание внутрь цитоплазмы (см. рис. 1.5). Постепенно оно увеличивается, и в конечном итоге от плазмалеммы отделяется мембранный пузырек — эндосома, которая переносит поглощенное вещество к пункту назначения, например, к лизосомам. Существует два вида эндоцитоза — фагоцитоз, когда клетка поглощает крупные частицы, например бактерии или фрагменты других клеток, и пипоцитоз, когда захватываются отдельные молекулы и макромолекулы. Экзоцитоз — процесс, обратный эндоцитозу (см. рис. 1.5). В этом случае мембранные пузырьки с заключенными в них продуктами, нуждающимися в выделении из клетки, подходят к плазмалемме и сливаются с ней, выделяя содержимое в окружающую среду;

рецепторная. Осуществляется с помощью мембранных белков- рецепторов. Они могут связываться со специфическими для каждого рецептора веществами (гормонами, нейромедиаторами, антигенами) по принципу «ключ к замку», что приводит к соответствующей реакции клетки.

  • — формирования межклеточных контактов. Эти контакты очень разнообразны, здесь мы выделим основные их типы.
  • 1. Простой контакт — клетки слипаются за счет элементов гликока- ликса, особенно специфических молекул гликопротеидов.
  • 2. Плотный контакт — мембраны соседних клеток на некоторых участках соединяются друг с другом с помощью специфических белков.
  • 3. Самые прочные контакты осуществляются с помощью десмосом, напоминающих бляшки или кнопки на определенных участках мембраны. В этом месте взаимодействуют друг с другом мембранные интегральные гликопротеиды соседних клеток. С внутренней стороны мембраны в области десмосомы находится другой специфический белок, который связан с филаментами цитоскелета.
  • 4 и 5. Щелевые и синаптические контакты будут подробно рассмотрены в параграфе 2.5 (соответственно электрические и химические синапсы).

Нередко цитоплазматическая мембрана имеет различные выросты, выполняющие дополнительные функции. Чаще всего среди таких выростов встречаются микроворсинки. Это ограниченные мембраной выросты цитоплазмы, имеющие цилиндрическую форму. Функции микроворсинок в клетках разных тканей различны. В клетках кишечного эпителия, например, они очень увеличивают всасывающую поверхность.

ЦИТОПЛАЗМАТИЧЕСКАЯ МЕМБРАНА

Цитоплазматическая мембрана или плазмалемма (лат. membrana – кожица, плёнка) – тончайшая пленка (7–10нм), отграничивающая внутреннее содержимое клетки от окружающей среды, видна только в электронный микроскоп.

По химической организации плазмалемма представляет липопротеидный комплекс – молекулы липидов и белков.

Её основу составляет липидный бислой, состоящий из фосфолипидов, кроме этого, в мембранах присутствуют гликолипиды и холестерол. Все они обладают свойством амфипатричности, т.е. у них есть гидрофильные («любящие воду») и гидрофобные («боящиеся воды») концы. Гидрофильные полярные «головки» липидных молекул (фосфатная группа) обращены кнаружи мембраны, а гидрофобные неполярные «хвосты» (остатки жирных кислот) – друг к другу, что создает биполярный липидный слой. Молекулы липидов подвижны и могут перемещаться в своем монослое или редко – из одного монослоя в другой. Монослои липидов обладают ассиметричностью, т. е. отличаются по составу липидов, что придает специфичность мембранам даже в пределах одной клетки. Бислой липидов может находиться в состоянии жидкого или твердого кристалла.

Читайте также:  Горло болит и отхаркивается с кровью - что делать, что это такое

Вторым обязательным компонентом плазмалеммы являются белки. Многие мембранные белки способны перемещаться в плоскости мембраны или вращаться вокруг своей оси, но не могут переходить с одной стороны бислоя липидов на другой.

Липиды обеспечивают основные структурные особенности мембраны, а белки – её функции. Функции мембранных белков различны: поддержание структуры мембран, получение и преобразование сигналов из окружающей среды, транспорт некоторых веществ, катализ реакций, происходящих на мембранах.

Различают несколько моделей строения цитоплазматической мембраны.

①. БУТЕРБРОДНАЯ МОДЕЛЬ(белкилипидыбелки)

В 1935г. английские ученые Даниэли и Даусон высказали идею о послойном расположении в мембранемолекул белков (темные слои в электронном микроскопе), которые залегают снаружи, и молекул липидов (светлый слой) – внутри. Длительное время существовало представление о едином трехслойном строении всех биологических мембран.

При детальном изучении мембраны с помощью электронного микроскопа оказалось, что светлый слой на самом деле представлен двумя слоями фосфолипидов – это билипидный слой, причем водорастворимые его участки – гидрофильные головки направлены к белковому слою, а нерастворимые (остатки жирных кислот) – гидрофобные хвосты обращены друг к другу.

Однако уже с середины 60-х годов начали накапливаться факты против унитарной «бутербродной» модели. В частности, по одним данным, не все мембраны имели четкую трехслойную структуру при электронно-микроскопическом исследовании; по другим – значительная часть мембранных белков имела глобулярную структуру, а не ламеллярную, как в постулируемой модели. Наконец, среди многочисленных моделей мембран, предложенных в середине 60-х годов, начали выделяться те, в которых доказывалось наличие гидрофобно-гидрофильных взаимодействий не только между липидными молекулами, но и между липидами и белками.

②. ЖИДКОСТНО-МОЗАИЧНАЯ МОДЕЛЬ

В 1972г.Сингер и Николсонописали модель мембраны, которая получила широкое признание. Согласно этой модели молекулы белков не образуют сплошного слоя, а погружены в биполярный липидный слой на разную глубину в виде мозаики. Глобулы белковых молекул, подобно айсбергам, погружены в «океан»

липидов: одни находятся на поверхности билипидного слоя – периферические белки, другие погружаются в него наполовину – полуинтегральные белки, третьи – интегральные белки – пронизывают его насквозь, формируя гидрофильные поры. Периферические белки, находясь на поверхности билипидного слоя, связаны с головками липидных молекул электростатическими взаимодействиями. Но они никогда не образуют сплошного слоя и, по сути дела, не являются белками собственно мембраны, а, скорее, связывают ее с надмембранной или субмембранной системой поверхностного аппарата клетки.

Основную роль в организации собственно мембраны играют интегральные и полуинтегральные (трансмембранные) белки, имеющие глобулярную структуру и связанные с липидной фазой гидрофильно-гидрофобными взаимодействиями. Молекулы белков, как и липиды, обладают амфипатричностью и своими гидрофобными участками взаимодействуют с гидрофобными хвостами билипидного слоя, а гидрофильные участки обращены к водной среде и образуют с водой водородные связи.

③. БЕЛКОВО-КРИСТАЛЛИЧЕСКАЯ МОДЕЛЬ(модель липопротеинового коврика)

Мембраны образованы переплетением липидных и белковых молекул, объединяющихся между собой на основе гидрофильно-

Белковые молекулы, как штифты, пронизывают слой липидов и выполняют в составе мембраны функцию каркаса. После обработки мембраны жирорастворимыми веществами белковый каркас сохраняется, что доказывает взаимосвязь между молекулами белков в мембране. По-видимому, эта модель реализуется лишь в отдельных специальных участках некоторых мембран, где требуется жесткая структура и тесные стабильные взаимоотношения между липидами и белками (например, в области расположения фермента Na-К –АТФ-азы).

Самой универсальной моделью, отвечающей термодинамическим принципам (принципам гидрофильно-гидрофобных взаимодействий), морфо-биохимическим и экспериментально-цитологическим данным, является жидкостно-мозаичная модель. Однако все три модели мембран не исключают друг друга и могут встречаться в разных участках одной и той же мембраны в зависимости от функциональных особенностей данного участка.

СВОЙСТВА МЕМБРАНЫ

1. Способность к самосборке. После разрушающих воздействий мембрана способна восстановить свою структуру, т.к. молекулы липидов на основе своих физико-химических свойств собираются в биполярный слой, в который затем встраиваются молекулы белков.

2. Текучесть. Мембрана не является жесткой структурой, большая часть входящих в её состав белков и липидов может перемещаться в плоскости мембраны, они постоянно флюктуируют за счет вращательных и колебательных движений. Это определяет большую скорость протекания химических реакций на мембране.

3. Полупроницаемость. Мембраны живых клеток пропускают, помимо воды, лишь определённые молекулы и ионы растворённых веществ. Это обеспечивает поддержание ионного и молекулярного состава клетки.

Читайте также:  Животные и растительные жиры польза и вред, список продуктов

4. Мембрана не имеет свободных концов. Она всегда замыкается в пузырьки.

5. Асимметричность. Состав наружного и внутреннего слоев как белков, так и липидов различен.

6. Полярность. Внешняя сторона мембраны несёт положительный заряд, а внутренняя – отрицательный.

1) Барьерная –плазмалемма отграничивает цитоплазму и ядро от внешней среды. Кроме того, мембрана делит внутреннее содержимое клетки на отсеки (компартменты), в которых зачастую протекают противоположные биохимические реакции.

2) Рецепторная(сигнальная) – благодаря важному свойству белковых молекул – денатурации, мембрана способна улавливать различные изменения в окружающей среде. Так, при воздействии на мембрану клетки различных средовых факторов (физических, химических, биологических) белки, входящие в ее состав, меняют свою пространственную конфигурацию, что служит своеобразным сигналом для клетки. Это обеспечивает связь с внешней средой, распознавание клеток и их ориентацию при формировании тканей и т.д. С этой функцией связана деятельность различных регуляторных систем и формирование иммунного ответа.

3) Обменная – в состав мембраны входят не только структурные белки, которые образуют ее, но и ферментативные, являющиеся биологическими катализаторами. Они располагаются на мембране в виде «каталитического конвейера» и определяют интенсивность и направленность реакций метаболизма.

4) Транспортная – молекулы веществ, диаметр которых не превышает 50 нм, могут проникать путем пассивного и активного транспорта через поры в структуре мембраны. Крупные вещества попадают в клетку путем эндоцитоза (транспорт в мембранной упаковке), требующего затраты энергии. Его разновидностями являются фаго- и пиноцитоз.

Пассивный транспорт – вид транспорта, в котором перенос веществ осуществляется по градиенту химической или электрохимической концентрации без затраты энергии АТФ. Выделяют два вида пассивного транспорта: простая и облегченная диффузия. Диффузия – это перенос ионов или молекул из зоны более высокой их концентрации в зону более низкой концентрации, т.е. по градиенту.

Простая диффузия – ионы солей и вода проникают через трансмембранные белки или жирорастворимые вещества по градиенту концентрации.

Облегченная диффузия – специфические белки-переносчики связывают вещество и переносят его через мембрану по принципу «пинг-понга». Таким способом через мембрану проходят сахара и аминокислоты. Скорость такого транспорта значительно выше, чем простой диффузии. Кроме белков- переносчиков, в облегченной диффузии принимают участие некоторые антибиотики – например, грамитидин и ваномицин. Поскольку они обеспечивают транспорт ионов, их называют ионофорами.

Активный транспорт – это вид транспорта, при котором расходуется энергия АТФ, он идёт против градиента концентрации. В нем принимают участие ферменты АТФ-азы. В наружной клеточной мембране находятся АТФ-азы, которые осуществляют перенос ионов против градиента концентрации, это явление называется ионным насосом. Примером является натрий-калиевый насос. В норме в клетке больше ионов калия, во внешней среде – ионов натрия. Поэтому по законам простой диффузии калий стремится из клетки, а натрий – в клетку. В противовес этому натрий-калиевый насос накачивает против градиента концентрации в клетку ионы калия, а ионы натрия выносит во внешнюю среду. Это позволяет поддерживать постоянство ионного состава в клетке и её жизнеспособность. В животной клетке одна треть АТФ расходуется на работу натрий-калиевого насоса.

Разновидностью активного транспорта является транспорт в мембранной упаковке – эндоцитоз. Крупные молекулы биополимеров не могут проникать через мембрану, они поступают в клетку в мембранной упаковке. Различают фагоцитоз и пиноцитоз. Фагоцитоз – захват клеткой твердых частиц, пиноцитоз – жидких частиц. В этих процессах выделяют стадии:

1) узнавание рецепторами мембраны вещества; 2) впячивание (инвагинация) мембраны с образованием везикулы (пузырька); 3) отрыв пузырька от мембраны, слияние его с первичной лизосомой и восстановление целостности мембраны; 4) выделение непереваренного материала из клетки (экзоцитоз).

Эндоцитоз является способом питания для простейших. У млекопитающих и человека имеется ретикуло-гистио-эндотелиальная система клеток, способная к эндоцитозу – это лейкоциты, макрофаги, клетки Купфера в печени.

ОСМОТИЧЕСКИЕ СВОЙСТВА КЛЕТКИ

Осмос – односторонний процесс проникновения воды через полупроницаемую мембрану из области с меньшей концентрацией раствора в область с более высокой концентрацией. Осмос обусловливает осмотическое давление.

Диализ – односторонняя диффузия растворенных веществ.

Раствор, в котором осмотическое давление такое же, как и в клетках, называют изотоническим. При погружении клетки в изотонический раствор её объем не изменяется. Изотонический раствор называют физиологическим – это 0,9% раствор хлорида натрия, который широко применяется в медицине при сильном обезвоживании и потери плазмы крови.

Раствор, осмотическое давление которого выше, чем в клетках, называют гипертоническим. Клетки в гипертоническом растворе теряют воду и сморщиваются. Гипертонические растворы широко применяются в медицине. Марлевая повязка, смоченная в гипертоническом растворе, хорошо впитывает гной.

Раствор, где концентрация солей ниже, чем в клетке, называют гипотоническим. При погружении клетки в такой раствор вода устремляется в нее. Клетка набухает, ее тургор увеличивается, и она может разрушиться. Гемолиз – разрушение клеток крови в гипотоническом растворе.

Осмотическое давление в организме человека в целом регулируется системой органов выделения.

Ссылка на основную публикацию
Цитовир-3 для детей инструкция по применению и отзывы, аналоги сиропа
Цитовир-3 сироп для детей Цитовир-3 сироп для детей : инструкция по применению и отзывы Латинское название: Cytovir-3 Действующее вещество: альфа-глутамил-триптофан...
Циклоферон купить в Москве, цены в аптеках
Циклоферон таблетки : инструкция по применению Инструкция Общая характеристика Круглые двояковыпуклые таблетки жёлтого цвета, покрытые кишечнорастворимой оболочкой. Состав На одну...
Цикорий польза и вред для организма мужчин, женщин, детей
Цикорий растворимый: полезные свойства и противопоказания Каждый из нас если не пробовал, то наверняка видел в магазине пакетики или баночки...
Цитовир-3 инструкция по применению показания, противопоказания, побочное действие – описание Cytovir 1
Цитовир ® -3 (сироп) ИНСТРУКЦИЯ по медицинскому применению препарата Цитовир ® -3 сироп Внимательно прочитайте эту инструкцию перед тем, как...
Adblock detector