Суставы человека анатомия и классификация

Суставы у человека

Основой строения живого организма выступает скелет, в состав которого входят подвижные соединения, а также костная и хрящевая ткани. Суставы человека важны и нужны для того, чтобы ходить, выполнять сложные и слаженные движения в повседневной работе и профессиональной деятельности. Артрологией называется сложная наука, изучающая все виды анастомозов с костями, краткое общее разъяснение которой обязательно для всех.

Виды, их анатомия и строение

Наглядным примером изучения структуры костных анастомозов в человеческом теле выступает синовиальный сустав. Клиническая анатомия человека делит все структурные компоненты на 2 вида:

  • Основные элементы:
    • суставные поверхности — участки на костях, которым они соприкасаются (головка и впадина);
    • суставной хрящ — защищает от разрушения в результате трения;
    • капсула — является защитой, отвечает за выработку синовии;
    • полость — щель между поверхностями, наполненная жидкостью;
    • синовия — смягчает трение костей, питает хрящ, поддерживая обмен веществ.
  • Вспомогательные образования:
    • хрящевой диск — пластинка, которая делит полость на две половины.
    • мениски — играют роль амортизатора, находятся в колене;
    • суставная губа — каемка хряща вокруг суставной впадины;
    • связочный соединительный аппарат — контролирует движения;
    • крупные и незначительные мышцы.

Наиболее полное развитие получили суставы и связки конечностей, так как они берут на себя основные функциональные способности человека в жизни и адаптации в социуме. В процессе эволюции рука человека сформировалась из передней конечности млекопитающих.

Функции и задачи

Разные виды суставов человека, их разнообразная анатомическая конструкция имеют принципиальное значение для ряда функциональных обязанностей, выполняемых костными соединениями. Все действия делятся на выполнение таких функций, как:

  • Комбинация костей, зубов и хрящей друг с другом, делает их прочным амортизатором движений.
  • Предотвращение разрушения костной ткани.
  • Выполнение осевых движений, среди которых:
    • фронтальные — сгибание, разгибание;
    • сагиттальные — приведение, отведение;
    • вертикальные — супинация (движение кнаружи), пронация (внутрь);
    • круговые движения — перемещение хода с оси на ось.
  • Физическая активность человека, что обеспечивает правильное строение сустава.
  • Сохранение положения скелета.
  • Влияние на рост и развитие организма.

Вернуться к оглавлению

Классификация, ее принципы

Соединений в организме много, каждое имеет свои особенности и выполняет конкретные функции. Наиболее удобной в клинической практике считается классификация суставов на виды и типы, что удачно изображает таблица. В нее не вошли непрерывные межхрящевые соединения ребер, начиная от 6-го и до 9-го.

Вид Характеристика Тип Особенности расположения
Волокнистые Соединительная ткань с коллагеном Шовные Швы черепа
Синдесмозы Соединяет лучевую и локтевую кость предплечья
Гвоздьевидные Зубы
Хрящевые В структуре находится гиалиновый хрящ или диск Синхондрозные Сустав ребра и рукоятки грудины
Симфизарные или полусуставы Лобковый симфиз, межпозвоночные сочленения
Синовиальные Сустав соединяет полость, капсулу, дополнительные связки, синовиальную жидкость, сумку, влагалища сухожилий Плоский (скользящий) Крестцово-подвздошный
Блоковидный Локтевой, коленный, плечелоктевой (винтообразный сустав)
Шаровой Грудино-реберные (чашеобразный)
Шарнирный (цилиндрический сустав) Соединяет зуб эпистофея и атлант
Мыщелковый Пястно-фаланговые пальцев рук
Седловидный Пястно-запястный большого пальца
Эллипсовидный Лучезапястный

Следует отдельно отметить комбинированный тип, к нему относятся сустав головки ребра и реберно-позвоночные сочленения. В последних бугорок ребра соединяется с поперечным отростком позвонка и делает его не очень подвижным.

Типы соединений

Еще суставы разделяют по таким критериям:

Сочленения могут классифицироваться по степени подвижности.

  • Подвижность:
    • синартрозы — недвижимый;
    • амфиартрозы — малоподвижны;
    • диартрозы — подвижны.
  • Оси движений:
    • одноосные суставы;
    • двухосные;
    • трехосные.
  • Биомеханические свойства:
    • простой;
    • сложный;
    • комплексный.

Вернуться к оглавлению

Основные суставы в организме человека

Тазобедренный

Соединяет части тазовой с головкой бедренной кости, которые покрыты хрящом и синовиальной мембраной. Шаровидный, парный, многоосный сустав нижних конечностей. Оси движения — фронтальная, саггитальная, вертикальная, круговые вращения. Суставная капсула крепится таким образом, что вертлужная губа и шейка бедра располагаются в суставной полости. Соединительный составляющий элемент представлен связкой головки бедра, лобково-бедренной, подвздошно-бедренной, седалищно-бедренной и круговой зоной.

Схема конструкции колена

Комплексный, мыщелковый, самый большой сустав на конечностях нижнего пояса устроен с участием надколенника, проксимальным краем большеберцовой и дистальным — бедренной кости. Анатомические связки коленного сустава представлены тремя группами:

  • Боковая — коллатеральный мало- и большеберцовые.
  • Внекапсульная (задняя) — связка надколенника, дугообразная, поддерживающие латерально-медиальные, подколенная.
  • Внутрикапсульные — поперечная коленная связка и крестообразные.

Обеспечивает вращения и движения во фронтальной оси. Имеет ряд синовиальных сумок, количество и размеры которых индивидуальны. Складки синовиальной мембраны накапливают жировую ткань. Поверхности сустава покрыты хрящевым слоем. Отличительной особенностью является наличие наружного и внутреннего серповидных частей хряща, что имеют названия менисков.

Голеностопный

Подвижный сустав, в котором соединяются дистальные эпифизы (низ) мало- и большеберцовой костей со стопой человека, а именно с таранной костью. Блоковидный, задействован в движениях фронтальной и саггитальной осей. Связки представлены двумя группами: латеральной, в которую входят таранно-малоберцовая и пяточно-малоберцовая связки и медиальной, или дельтовидной связкой. Голеностопный сустав — главная область травматизации у спортсменов, которые двигаются непрерывно.

Седловидный

Разновидность синовиальных анастомозов, напоминающий наездника на лошади — соответствие названию. На кость, похожей по форме на седло, насажена другая кость. Отличаются гибкостью по сравнению с другими. Ярким примером сустава, который имеет опорно-двигательная система человека, является пястно-запястный сустав большого пальца руки. Здесь седлом выступает кость трапеция, а на ней размещена 1-я пястная кость. Противопоставленный большой палец на верхних конечностях — отличительная черта человека, что выделяет его от мира животных, и благодаря которому есть возможность выполнять работу, в том числе осваивать новые профессии.

Парный локтевой

Сложное подвижное сочленение плечевой с лучевой и локтевой костями, которое состоит сразу из 3 суставов, окруженных одной капсулой. Среди них:

  • плечелучевой — шаровидный сустав, отвечает за движения в двух осях вместе с локтевым;
  • плечелоктевой — блоковидный, винтообразный;
  • проксимальный лучелоктевой — вращательный сустав 1-го типа.

Сочленение имеет сложное строение и имеет самый большой размер в верхних конечностях.

Самый большой сустав верхней половины тела, который обеспечивает движения верхних конечностей и соответствует их количеству. Анатомически считается блоковидным с винтообразными скольжениями, боковые передвижения в нем невозможны. Вспомогательные элементы представлены двумя коллатеральными связками — лучевой и локтевой.

Шаровидный

Сюда относят тазобедренное и плечевое соединение костей (многоосные структуры), что обладают наибольшей мобильностью. Название этой группы определил обязательный костный элемент, напоминающий шар: в 1-м примере — это головка плечевой кости, во 2-м — головка бедра. Общие элементы строения представлены шаровидной головкой на конце одной кости и чашеобразным углублением на второй. Плечевой сустав имеет наибольший диапазон свободных движений в скелете, он простой по структуре, а бедренный — менее мобилен, но сильнее и выносливее.

Блоковидный

Типы суставов, что относятся к синовиальным. Сюда входят коленный, локтевой, голеностопные и менее сложные отделы, обладающие хорошей подвижностью — межфаланговые суставы рук и ног. Эти сочленения, в меру своих особенностей, наделены работой меньшей силы и удерживают незначительную массу, что стандартно их строению — маленькие связки, гиалиновый хрящ, капсула с синовиальной мембраной.

Читайте также:  Офисные линзы – удобно на средних и близких расстояниях

Эллипсовидный

Вид суставов, также известен как плоский, образован костями с почти гладкой поверхностью. В суставной щели постоянно функционирует синовия, которую продуцирует мембрана. Эти подвижные суставы способствуют ограниченной амплитуде во всех направлениях. Представителями группы являются межпозвонковые, запястные, запястно-пястные суставы в теле человека.

Мыщелковые

Отдельный подвид эллипсоидного класса. Считается переходным типом от блоковидного. Отличительная черта от 1-го — несовпадение формы и размеров соединяющихся поверхностей, от эллипсоидного — числом головок структуры. В организме есть два примера таких сочленения — височно-мандибулярный и коленный, последний двигается вокруг 2-х осей.

Частые болезни, их причины и симптоматика

Заболевание Причина Симптомы
Артрит Инфекция, аллергия, аутоиммунный процесс Утренняя скованность, припухлость, сыпь на коже, температура
Артроз Дегенеративные поражения, остеопорозы Нарастающая боль от непродолжительной до постоянной
Дисплазия Врожденные аномалии Нарушения функций пораженного сочленения, невозможность самостоятельных движений, поражены мышцы

Вернуться к оглавлению

Диагностика суставных болезней

Базируется на следующих методах и приемах:

Гониометрия позволяет определить насколько человек может двигать сочленением.

  • Жалобы.
  • Анамнез болезни.
  • Общее обследование, пальпация.
  • Гониометрия — характеристика свободной амплитуды движений.
  • Обязательные лабораторные исследования:
    • общий анализ крови;
    • биохимия крови, особенно важны С-реактивный белок, реакция оседания эритроцитов, антинуклеарные антитела, мочевая кислота;
    • анализ мочи общий.
  • Лучевые методы исследования:
    • рентгенологический;
    • артрография;
    • КТ.
  • Радионуклидный.
  • МРТ.
  • УЗД.

Вернуться к оглавлению

Лечение недугов

Терапия результативная только при правильно поставленном диагнозе и, если не опоздала диагностика. Таблица основных заболеваний выделяет причину, которую и следует лечить. Когда есть очаги инфекции, назначают антибиотики. При аутоиммунном процессе используют иммуносупрессоры — моноклональные антитела, кортикостероиды, цитостатики. Дегенеративные состояния корректируются хондропротекторами. Принимают нестероидные противовоспалительные средства, влияющие на уровень кальция и прочность костей. Реабилитация обеспечивается лечебной физкультурой и физиотерапией. Хирургическое лечение применяется после исчерпания консервативных методов, но и оно не гарантирует полное блокирование любого патологического процесса.

Характеристика суставов человека

Классификация суставов и их общая характеристика

Классификацию суставов можно проводить по следующим принципам:
1) по числу суставных поверхностей,
2) по форме суставных поверхностей и
3) по функции.

По числу суставных поверхностей различают:
1. Простой сустав (art. simplex), имеющий только 2 суставные поверхности, например межфаланговые суставы.
2. Сложный сустав (art. composite), имеющий более двух сочленовных поверхностей, например локтевой сустав. Сложный сустав состоит из нескольких простых сочленений, в которых движения могут совершаться отдельно. Наличие в сложном суставе нескольких сочленений обусловливает общность их связок.
3. Комплексный сустав (art. complexa), содержащий внутрисуставной хрящ, который разделяет сустав на две камеры (двухкамерный сустав). Деление на камеры происходит или полностью, если внутрисуставной хрящ имеет форму диска (например, в височно-нижнечелюстном суставе), или неполностью, если хрящ приобретает форму полулунного мениска (например, в коленном суставе).
4. Комбинированный сустав представляет комбинацию нескольких изолированных друг от друга суставов, расположенных отдельно друг от друга, но функционирующих вместе. Таковы, например, оба височно-нижнечелюстных сустава, проксимальный и дистальный лучелоктевые суставы и др.
Так как комбинированный сустав представляет функциональное сочетание двух или более анатомически отдельных сочленений, то этим он отличается от сложного и комплексного суставов, каждый из которых, будучи анатомически единым, слагается из функционально различных соединений.

По форме и по функции классификация проводится следующим образом.
Функция сустава определяется количеством осей, вокруг которых совершаются движения. Количество же осей, вокруг которых происходят движения в данном суставе, зависит от формы его сочленовных поверхностей. Так, например, цилиндрическая форма сустава позволяет производить движение лишь вокруг одной оси вращения.
При этом направление данной оси будет совпадать с осью расположения самого цилиндра: если цилиндрическая головка стоит вертикально, то и движение совершается вокруг вертикальной оси (цилиндрический сустав); если же цилиндрическая головка лежит горизонтально, то и движение будет совершаться вокруг одной из горизонтальных осей, совпадающих с осью расположения головки, — например, фронтальной (блоковидный сустав).

В противоположность этому шаровидная форма головки дает возможность производить вращение вокруг множества осей, совпадающих с радиусами шара (шаровидный сустав).
Следовательно, между числом осей и формой сочленовных поверхностей имеется полное соответствие: форма суставных поверхностей определяет характер движений сустава и, наоборот, характер движений данного сочленения обусловливает его форму (П. Ф. Лесгафт).

Здесь мы видим проявление диалектического принципа единства формы и функции.
Исходя из этого принципа, можно наметить следующую единую анатомо-физиологическую классификацию суставов.

На рисунке представлены:
Одноосные суставы: 1a — блоковидный таранно-голеностопный сустав (articulario talocruralis ginglymus)
1б — блоковидный межфаланговый сустав кисти (articulatio interpalangea manus ginglymus);
1в — цилиндрический плече-лучевой сустав локтевого сустава, articulatio radioulnaris proximalis trochoidea.

Двуосные суставы: 2a — эллипсовидный лучезапястный сустав, articulatio radiocarpea ellipsoidea;
2б — мыщелковый коленный сустав (articulatio genus -articulatio condylaris);
2в — седловидный запястно-пястный сустав, (articulatio carpometacarpea pollicis — articulatio sellaris).

Трехосные суставы: 3a — шаровидный плечевой сустав (articulatio humeri — articulatio spheroidea);
3б — чашеобразный тазобедренный сустав (articulatio coxae — articulatio cotylica);
3в — плоский крестцово-подвздошный сустав (articulatio sacroiliaca — articulatio plana).

I. Одноосные суставы

1. Цилиндрический сустав, art. trochoidea. Цилиндрическая суставная поверхность, ось которой располагается вертикально, параллельно длинной оси сочленяющихся костей или вертикальной оси тела, обеспечивает движение вокруг одной вертикальной оси — вращение, rotatio; такой сустав называют также вращательным.

2. Блоковидный сустав, ginglymus (пример — межфаланговые сочленения пальцев). Блоковидная суставная поверхность его представляет собой поперечно лежащий цилиндр, длинная ось которого лежит поперечно, во фронтальной плоскости, перпендикулярно длинной оси сочленяющихся костей; поэтому движения в блоковидном суставе совершаются вокруг этой фронтальной оси (сгибание и разгибание). Направляющие бороздка и гребешок, имеющиеся на сочленовных поверхностях, устраняют возможность бокового соскальзывания и способствуют движению вокруг одной оси.
Если направляющая бороздка блока располагается не перпендикулярно к оси последнего, а под некоторым углом к ней, то при продолжении ее получается винтообразная линия. Такой блоковидный сустав рассматривают как винтообразный (пример — плечелоктевой сустав). Движение в винтообразном суставе такое же, как и в чисто блоковидном сочленении.
Согласно закономерностям расположения связочного аппарата, в цилиндрическом суставе направляющие связки будут располагаться перпендикулярно вертикальной оси вращения, в блоковидном суставе — перпендикулярно фронтальной оси и по бокам ее. Такое расположение связок удерживает кости в их положении, не мешая движению.

II. Двухосные суставы

1. Эллипсовидный сустав, articulatio ellipsoidea (пример — лучезапястный сустав). Сочленовные поверхности представляют отрезки эллипса: одна из них выпуклая, овальной формы с неодинаковой кривизной в двух направлениях, другая соответственно вогнутая. Они обеспечивают движения вокруг 2 горизонтальных осей, перпендикулярных друг другу: вокруг фронтальной — сгибание и разгибание и вокруг сагиттальной — отведение и приведение.
Связки в эллипсовидных суставах располагаются перпендикулярно осям вращения, на их концах.

2. Мыщелковый сустав, articulatio condylaris (пример — коленный сустав).
Мыщелковый сустав имеет выпуклую суставную головку в виде выступающего округлого отростка, близкого по форме к эллипсу, называемого мыщелком, condylus, отчего и происходит название сустава. Мыщелку соответствует впадина на сочленовной поверхности другой кости, хотя разница в величине между ними может быть значительной.

Мыщелковый сустав можно рассматривать как разновидность эллипсовидного, представляющую переходную форму от блоковидного сустава к эллипсовидному. Поэтому основной осью вращения у него будет фронтальная.

От блоковидного мыщелковый сустав отличается тем, что имеется большая разница в величине и форме между сочленяющимися поверхностями. Вследствие этого в отличие от блоковидного в мыщелковом суставе возможны движения вокруг двух осей.

От эллипсовидного сустава он отличается числом суставных головок. Мыщелковые суставы имеют всегда два мыщелка, расположенных более или менее сагиттально, которые или находятся в одной капсуле (например, два мыщелка бедренной кости, участвующие в коленном суставе), или располагаются в разных суставных капсулах, как в атлантозатылочном сочленении.

Поскольку в мыщелковом суставе головки не имеют правильной конфигурации эллипса, вторая ось не обязательно будет горизонтальной, как это характерно для типичного эллипсовидного сустава; она может быть и вертикальной (коленный сустав).

Если мыщелки расположены в разных суставных капсулах, то такой мыщелковый сустав близок по функции к эллипсовидному (атлантозатылочное сочленение). Если же мыщелки сближены и находятся в одной капсуле, как, например, в коленном суставе, то суставная головка в целом напоминает лежачий цилиндр (блок), рассеченный посередине (пространство между мыщелками). В этом случае мыщелковый сустав по функции будет ближе к блоковидному.

3. Седловидный сустав, art. sellaris (пример — запястно-пястное сочленение I пальца).
Сустав этот образован 2 седловидными сочленовными поверхностями, сидящими «верхом» друг на друге, из которых одна движется вдоль и поперек другой. Благодаря этому в нем совершаются движения вокруг двух взаимно перпендикулярных осей: фронтальной (сгибание и разгибание) и сагиттальной (отведение и приведение).
В двухосных суставах возможен также переход движения с одной оси на другую, т. е. круговое движение (circumductio).

III. Многоосные суставы

1. Шаровидные. Шаровидный сустав, art. spheroidea (пример — плечевой сустав). Одна из суставных поверхностей образует выпуклую, шаровидной формы головку, другая — соответственно вогнутую суставную впадину. Теоретически движение может совершаться вокруг множества осей, соответствующих радиусам шара, но практически среди них обыкновенно различают три главные оси, перпендикулярные друг другу и пересекающиеся в центре головки:
1) поперечную (фронтальную), вокруг которой происходит сгибание, flexio, когда движущаяся часть образует с фронтальной плоскостью угол, открытый кпереди, и разгибание, extensio, когда угол будет открыт кзади;
2) переднезаднюю (сагиттальную), вокруг которой совершаются отведение, abductio, и приведение, adductio;
3) вертикальную, вокруг которой происходит вращение, rotatio, внутрь, pronatio, и наружу, supinatio.
При переходе с одной оси на другую получается круговое движение, circumductio.

Шаровидный сустав — самый свободный из всех суставов. Так как величина движения зависит от разности площадей суставных поверхностей, то суставная ямка в таком суставе мала сравнительно с величиной головки. Вспомогательных связок у типичных шаровидных суставов мало, что определяет свободу их движений.

Разновидность шаровидного сочленения — чашеобразный сустав, art. cotylica (cotyle, греч. — чаша). Суставная впадина его глубока и охватывает большую часть головки. Вследствие этого движения в таком суставе менее свободны, чем в типичном шаровидном суставе; образец чашеобразного сустава мы имеем в тазобедренном суставе, где такое устройство способствует большей устойчивости сустава.

А — одноосные суставы: 1,2- блоковидныс суставы; 3 — цилиндрический сустав;
Б — двухосные суставы: 4 — эллипсовидный сустав: 5 — мы шелковый сустав; 6 — седловидный сустав;
В — трехосные суставы: 7- шаровидный сустав; 8- чашеобразный сустав; 9 — плоский сустав

2. Плоские суставы, art. plana (пример — artt. intervertebrales), имеют почти плоские суставные поверхности. Их можно рассматривать как поверхности шара с очень большим радиусом, поэтому движения в них совершаются вокруг всех трех осей, но объем движений вследствие незначительной разности площадей суставных поверхностей небольшой.
Связки в многоосных суставах располагаются со всех сторон сустава.

Тугие суставы — амфиартрозы

Под этим названием выделяется группа сочленений с различной формой суставных поверхностей, но сходных по другим признакам: они имеют короткую, туго натянутую суставную капсулу и очень крепкий, нерастягивающийся вспомогательный аппарат, в частности короткие укрепляющие связки (пример — крестцово-подвздошный сустав).

Вследствие этого суставные поверхности тесно соприкасаются друг с другом, что резко ограничивает движения. Такие малоподвижные сочленения и называют тугими суставами — амфиартрозами (BNA). Тугие суставы смягчают толчки и сотрясения между костями.

К этим суставам можно отнести также плоские суставы, art. plana, у которых, как отмечалось, плоские суставные поверхности равны по площади. В тугих суставах движения имеют скользящий характер и крайне незначительны.

А — трехосные (многоосные) суставы: А1— шаровидный сустав; А2- плоский сустав;
Б — двухосные суставы: Б1 — эллипсовидный сустав; Б2— седловидный сустав;
В — одноосные суставы: B1 — цилиндрический сустав; В2— блоковидный сустав

ТОПОГРАФО-АНАТОМИЧЕСКАЯ ХАРАКТЕРИСТИКА АНТЕРОЛАТЕРАЛЬНОЙ СВЯЗКИ КОЛЕННОГО СУСТАВА

Полный текст:

  • Аннотация
  • Об авторах
  • Список литературы
  • Cited By

Аннотация

Цель исследования — оценить частоту встречаемости, выраженность и особенности топографии антеролатеральной связки (АЛС) коленного сустава применительно к стабилизирующим операциям на коленном суставе.

Материал и методы. В исследование были включены 60 препаратов нижних конечностей, полученных от 30 нефиксированных трупов людей, умерших в возрасте от 69 до 99 лет. Было выполнено препарирование обычным способом 30 парных коленных суставов. При обнаружении АЛС производилась оценка отношений АЛС с телом латерального мениска и ее связь с малоберцовой коллатеральной связкой, оценивалось наличие латеральных нижних коленных сосудов (артерия и вены), а также место прикрепления АЛС на латеральном надмыщелке бедренной кости и место прикрепления на латеральном мыщелке большеберцовой кости. Также измерялись длина связки, ширина в месте прикрепления АЛС на латеральном надмыщелке бедренной кости, ширина на уровне суставной щели и ширина в месте прикрепления АЛС на латеральном мыщелке большеберцовой кости.

Результаты. Частота встречаемости антеролатеральной связки в изучаемой возрастной группе составила 56,6%, причем во всех наблюдениях она присутствовала в обоих коленных суставах. У женщин связка была обнаружена в 66,7% наблюдений (24 сустава из 36), у мужчин — в 41,6% (10 суставов из 24). Средняя длина связки — 38,5±4,4 мм, средняя ширина на уровне суставной щели — 4,45±0,85 мм. Место крепления на латеральном надмыщелке бедренной кости представлено в трех вариантах: кзади и проксимальнее от малоберцовой коллатеральной связки — 64,7%; кпереди от малоберцовой коллатеральной связки — 23,5%; в месте крепления сухожилия подколенной мышцы или рядом с ним — 11,8%. Место крепления на латеральном мы- щелке большеберцовой кости достаточно стандартно — приблизительно на середине линии, проведенной от головки малоберцовой кости к бугорку Gerdy.

Заключение. Оптимальной областью для формирования проксимального канала при хирургическом восстановлении АЛС является расположение кзади и проксимальнее места начала малоберцовой коллатеральной связки. Выявленная закономерность хода латеральных нижних коленных сосудов позволит сохранить один из основных источников кровоснабжения переднелатеральной области коленного сустава.

Ключевые слова

Об авторах

канд. мед. наук, ассистент

кафедра травматологии и ортопедии

Ул. Баррикадная, д. 2/1, стр.1, 125993, Москва

Литовский бульвар, д. 1А, 117593, Москва

врач травматолог- ортопед

Литовский бульвар, д. 1А, 117593, Москва

кафедра травматологии и ортопедии

Ул. Баррикадная, д. 2/1, стр.1, 125993, Москва

центр сочетанной травмы и повреждений таза

Ул. Фортунатовская, д. 1, 105187, Москва

д-р мед. наук, профессор, зав. кафедрой

кафедра травматологии и ортопедии

Ул. Баррикадная, д. 2/1, стр.1, 125993, Москва

Литовский бульвар, д. 1А, 117593, Москва

Список литературы

1. Segond P. Recherches cliniques et experimentales sur les epanchements sanguins du genou par entorse. Progres Medical. 1879;7:297-299, 319-321, 340-341.

2. Campos J.C., Chung C.B., Lektrakul N., Pedowitz R., Trudell D., Yu J., Resnick D. Pathogenesis of the Segond fracture: anatomic and MR imaging evidence of an iliotibial tract or anterior oblique band avulsion. Radiology. 2001;219(2):381-386. DOI: 10.1148/radiology.219.2.r01ma23381

3. Terry G.C., Hughston J.C., Norwood L.A. The anatomy of the iliopatellar band and iliotibial tract. Am J Sports Med. 1986;14(1):39-45. DOI: 10.1177/036354658601400108.

4. Dietz G.W., Wilcox D.M., Montgomery J.B. Segond tibial condyle fracture: lateral capsular ligament avulsion. Radiol. 1986;159(2):467-469. DOI: 10.1148/radiology.159.2.3961179.

5. Johnson L.L. Lateral capsular ligament complex: anatomical and surgical considerations. Am J Sports Med. 1979;7(3):156-160. DOI: 10.1177/036354657900700302.

6. Hughston J.C., Andrews A.R., Cross M.J., Moschi A. Classification of knee ligament instabilities: Part I. The medial compartment and cruciate ligaments. J Bone Joint Surg Am. 1976;58(2):159-172.

7. Hughston J.C., Andrews J.R., Cross M.J., Moschi A. Classification of knee ligament instabilities: Part II. The lateral compartment. J Bone Joint Surg Am. 1976;58(2):173-179.

8. LaPrade R.F., Gilbert T.J., Bollom T.S., Wentorf F., Chaljub G. The magnetic resonance imaging appearance of individual structures of the posterolateral knee: a prospective study of normal knees and knees with surgically verified grade III injuries. Am J Sports Med. 2000;28(2):191-199. DOI: 10.1177/03635465000280020901.

9. Goldman A.B., Pavlov H., Rubenstein D. The Segond fracture of the proximal tibia: a small avulsion that reflects major ligamentous damage. AJR Am J Roentgenol. 1988;151(6):1163-1167. DOI: 10.2214/ajr.151.6.1163.

10. Vincent J.P., Magnussen R.A., Gezmez F., Uguen A., Jacobi M., Weppe F., Al-Saati M.F., Lustig S., Demey G., Servien E., Neyret P. The anterolateral ligament of the human knee: an anatomic and histological study. Knee Surg Sports Traumatol Arthrosc. 2012;20(1):147-152. doi: 10.1007/s00167-011-1580-3.

11. Claes S., Vereecke E., Maes M., Victor J., Verdonk P., Bellemans J. Anatomy of the anterolateral ligament of the knee. J Anat. 2013;223(4):321-328. doi: 10.1111/joa.12087.

12. Sonnery-Cottet B., Daggett M., Fayard J-M., Ferretti A., Helito C.P., Lind M., Monaco E., Castro de Pádua V.B., Thaunat M., Wilson A., Zaffagnini S., Zijl J., Claes S. Anterolateral Ligament Expert Group consensus paper on the management of internal rotation and instability of the anterior cruciate ligament – deficient knee. J Orthop Traumatol. 2017;18(2):91-106. doi: 10.1007/s10195-017-0449-8.

13. Rasmussen M.T., Nitri M., Williams B.T., Moulton S.G., Cruz R.S., Dornan G.J., Goldsmith M.T., LaPrade R.F. An in vitro robotic assessment of the anterolateral ligament, part 1: secondary role of the anterolateral ligament in the setting of an anterior cruciate ligament injury. Am J Sports Med. 2016;44(3):585-592. doi: 10.1177/0363546515618387.

14. Sonnery-Cottet B., Barbosa N.C., Tuteja S., Daggett M., Kajetanek C., Thaunat M. Minimally invasive anterolateral ligament reconstruction in the setting of anterior cruciate ligament injury. Arthrosc Tech. 2016;5(1):e211-e215. doi: 10.1016/j.eats.2015.11.005.

15. Kennedy M.I., Claes S., Fuso F.A., Williams B.T., Goldsmith M.T., Turnbull T.L., Wijdicks C.A., LaPrade R.F. The anterolateral ligament: an anatomic, radiographic, and biomechanical analysis. Am J Sports Med. 2015;43(7): 1606-1615. doi: 10.1177/0363546515578253.

16. Parsons E.M., Gee A.O., Spiekerman C., Cavanagh P.R. The biomechanical function of the anterolateral ligament of the knee. Am J Sports Med. 2015;43(3): 669-674. doi: 10.1177/0363546514562751.

17. Potu B.K., Salem A.H., Abu-Hijleh M.F. Morphology of anterolateral ligament of the knee: a cadaveric observation with clinical insight. Adv Med. 2016; 2016:9182863. doi:10.1155/2016/9182863.

18. Daggett M., Ockuly A.C., Cullen M., Busch K., Lutz C., Imbert P., Sonnery-Cottet B. Femoral origin of the anterolateral ligament: an anatomic analysis. Arthroscopy. 2016;32(5):835-841. doi: 10.1016/j.arthro.2015.10.006.

19. Dodds A.L., Halewood C., Gupte C.M., Williams A., Amis A.A. The anterolateral ligament: Anatomy, length changes and association with the Segond fracture. Bone Jnt J. 2014. 96-B(3):325-331. doi: 10.1302/0301-620x.96b3.33033.

20. Lutz C., Sonnery-Cottet B., Niglis L., Freychet B., Clavert P., Imbert P. Behavior of the anterolateral structures of the knee during internal rotation. Orthop Traumatol Surg Res. 2015;101(5):523-528. doi: 10.1016/j.otsr.2015.04.007.

21. Xie X., Liu X., Chen Z., Yu Y., Peng S., Li Q. A metaanalysis of bone-patellar tendon-bone autograft versus four-strand hamstring tendon autograft for anterior cruciate ligament reconstruction. Knee. 2015;22(2): 100-110. doi: 10.1016/j.knee.2014.11.014.

22. Mohtadi N.G., Chan D.S., Dainty K.N., Whelan D.B. Patellar tendon versus hamstring tendon autograft for anterior cruciate ligament rupture in adults. Cochrane Database Syst Rev. 2011;(9):CD005960. doi: 10.1002/14651858.CD005960.pub2.

23. Andernord D., Desai N., Bjornsson H., Ylander M., Karlsson J., Samuelsson K. Patient predictors of early revision surgery after anterior cruciate ligament reconstruction: a cohort study of 16,930 patients with 2-year follow-up. Am J Sports Med. 2015;43(1):121-127. doi: 10.1177/0363546514552788.

24. Bourke H.E., Salmon L.J., Waller A., Patterson V., Pinczewski L.A. Survival of the anterior cruciate ligament graft and the contralateral ACL at a minimum of 15 years. Am J Sports Med. 2012;40(9):1985-1992. doi: 10.1177/0363546512454414.

25. Pujol N., Blanchi M.P., Chambat P. The incidence of anterior cruciate ligament injuries among competitive Alpine skiers: a 25-year investigation. Am J Sports Med. 2007;35(7):1070-1074. doi: 10.1177/0363546507301083.

26. Oshima T., Nakase J., Numata H., Takata Y., Tsuchiya H. Ultrasonography imaging of the anterolateral ligament using real-time virtual sonography. Knee. 2016;23(2):198-202. doi: 10.1016/j.knee.2015.10.002.

27. Roessler P.P., Schuttler K.F., Heyse T.J., Wirtz D.C., Efe T. The anterolateral ligament (ALL) and its role in rotational extra-articular stability of the knee joint: a review of anatomy and surgical concepts. Arch Orthop Trauma Surg. 2016;136(3):305-313. doi: 10.1007/s00402-015-2395-3.

28. Helito C.P., Demange M.K., Bonadio M.B., Tirico L.E., Gobbi R.G., Pecora J.R., Camanho G.L. Radiographic landmarks for locating the femoral origin and tibial insertion of the knee anterolateral ligament. Am J Sports Med. 2014;42(10):2356-2362. doi: 10.1177/0363546514543770.

29. Caterine S., Litchfield R., Johnson M., Chronik B., Getgood A. A cadaveric study of the anterolateral ligament: re-introducing the lateral capsular ligament. Knee Surg Sports Traumatol Arthrosc. 2015;23(11):3186- 3195. doi: 10.1007/s00167-014-3117-z.

30. Helito C.P., Demange M.K., Bonadio M.B., Tirico L.E., Gobbi R.G., Pecora J.R., Camanho G.L. Anatomy and histology of the knee anterolateral ligament. Orthop J Sports Med. 2013;1(7):2325967113513546. doi: 10.1177/2325967113513546.

Для цитирования:

Гончаров Е.Н., Коваль О.А., Краснов Г.О., Миронов А.Н., Гончаров Н.Г. ТОПОГРАФО-АНАТОМИЧЕСКАЯ ХАРАКТЕРИСТИКА АНТЕРОЛАТЕРАЛЬНОЙ СВЯЗКИ КОЛЕННОГО СУСТАВА. Травматология и ортопедия России. 2018;24(1):88-95. https://doi.org/10.21823/2311-2905-2018-24-1-88-95

For citation:

Goncharov E.N., Koval O.A., Krasnov G.O., Mironov A.N., Goncharov N.G. TOPOGRAPHIC AND ANATOMICAL FEATURES OF ANTEROLATERAL LIGAMENT OF THE KNEE. Traumatology and Orthopedics of Russia. 2018;24(1):88-95. (In Russ.) https://doi.org/10.21823/2311-2905-2018-24-1-88-95


Контент доступен под лицензией Creative Commons Attribution 4.0 License.

Ссылка на основную публикацию
Супы для кормящих мам рецепты в первый месяц (грибной, из индейки, фасолевый)
Супы для кормящих мам: какие первые блюда полезны при лактации Во время лактации рацион женщины должен быть сбалансированным, а продукты,...
Студопедия — В сосудистой рефлексогенной зоне
Мир психологии психология для всех и каждого Главная О нас История Команда Новости Сайт Пресса Дети Стихи детей Рассказы детей...
Студопедия — Методы определения кетоновых тел в моче
6. Качественные реакции на кетоновые тела в моче: а) проба Легаля Метод основан на способности ацетона и ацетоацетата в щелочной...
Суспензия Зиннат для детей инструкция по применению, отзывы и цены на антибиотик
Зиннат раствор - инструкция по применению Регистрационный номер: Торговое наименование препарата: Международное непатентованное или химическое наименование: Лекарственная форма: гранулы для...
Adblock detector